Scheme III
[4X-Pybox]- $\mathbf{R h}(\mathrm{III}) \mathrm{Cl}_{3}$

(10 mL) was added an aqueous solution of dimethylamine (50 wt $\%, 30 \mathrm{~mL}$). The mixture was stirred for 3 days at $40^{\circ} \mathrm{C}$. The workup and purification were similar to those for 5 as described above to give 6 as a white solid in 61% ($210 \mathrm{mg}, 0.61 \mathrm{mmol}$) yield: $\mathrm{TLC} R_{f}=0.2$ (ethyl acetate); mp $81-82^{\circ}{ }^{\circ} \mathrm{C} ;[\alpha]^{24} \mathrm{D}=-42.5^{\circ}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{c}=0.52\right.$); IR (KBr disk) $1595,1418,1350,1180 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.06(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 6 \mathrm{H}), 4.14(\mathrm{~m}, 2 \mathrm{H}), 4.19$ (t, $J=8.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.49 (dd, $J=8.3,9.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (s , 2 H); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $18.26,19.18,32.85,39.48,70.69$, 72.79, 108.0, 147.0, 155.0, 163.3. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$: C, 62.95; H, 8.34; N, 15.46. Found: C, 62.53; H, 8.35; N, 15.79.
(4-Chloro-pybox) RhCl_{3} (8). A solution of $\mathrm{RhCl}_{3} /\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(263$ $\mathrm{mg}, 1.0 \mathrm{mmol}$) and 4 -chloro-pybox (4) ($336 \mathrm{mg}, 1.0 \mathrm{mmol}$) in ethanol (8.0 mL) was heated at reflux for 2 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography with ethyl acetate-methanol as eluents to give 8 as an orange solid in 63% ($346 \mathrm{mg}, 0.63 \mathrm{mmol}$) yield: mp $207-208^{\circ} \mathrm{C}$ dec; $[\alpha]^{25}{ }_{\mathrm{D}}=+551^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{c}=0.54\right)$; IR (KBr disk) $1575,1480,1375,1248,1064,960,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~m}, 2 \mathrm{H}), 4.96$ (dd, $J=7.8,9.3 \mathrm{~Hz}$, 2 H), 5.03 (dd, $J=9.3,10.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.98 (s, 2 H); ${ }^{13} \mathrm{C}$ NMR (67.8 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $15.09,19.49,28.45,68.87,73.54,126.8,147.7,148.7$, 165.5. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{RhCl}_{4}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 36.85 ; \mathrm{H}$, 4.18; N, 7.58. Found: C, 36.41; H, 4.06; N, 7.52.
(4-Methoxy-pybox) $\mathbf{R h C l}_{3}(9) . \mathrm{RhCl}_{3} /\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(263 \mathrm{mg}, 1.0$ mmol), 4 -methoxy-pybox (5) ($332 \mathrm{mg}, 1.0 \mathrm{mmol}$), and ethanol (5.0 mL) were refluxed for 3 h . 9 was obtained as an orange solid in 71% yield ($383 \mathrm{mg}, 0.71 \mathrm{mmol}$): $\mathrm{mp} 210-211^{\circ} \mathrm{C} \mathrm{dec} ;[\alpha]^{25} \mathrm{D}=$ $+468.7^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{c}=0.53\right)$; $\mathrm{IR}(\mathrm{KBr}$ disk) $1580,1490,1465,1380$, $1240,1120,1080 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98$ (d, J $=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}$, $3 \mathrm{H}), 4.64(\mathrm{~m}, 2 \mathrm{H}), 4.86-5.05(\mathrm{~m}, 4 \mathrm{H}), 7.47$ (s, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) 15.06,19.49,28.36,57.61,68.67,73.13,113.0,147.5$, 166.0, 169.2. Anal. Calcd for $\mathrm{C}_{18} \mathrm{C}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{RhCl}_{3}\left(0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: C , 38.10; H, 4.49. Found: C, 38.29; H, 4.55.
(4-(Dimethylamino)-pybox) RhCl_{3} (10). $\mathrm{RhCl}_{3} /\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(263$ $\mathrm{mg}, 1.0 \mathrm{mmol}$), 4 -(dimethylamino)-pybox (6) ($334 \mathrm{mg}, 1.0 \mathrm{mmol}$), and ethanol (6.0 mL) were refluxed for 1 h .10 was obtained as an orange solid in 72% yield ($396 \mathrm{mg}, 0.72 \mathrm{mmol}$): $\mathrm{mp}>300^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}=+447.6^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.53\right)$; IR (KBr disk) 1580,1530, $1420,1380,1240,1080 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96$ (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), $1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), $3.05(\mathrm{~m}, 2 \mathrm{H}), 3.27$ ($\mathrm{s}, 6 \mathrm{H}$), 4.61 (m, 2 H), 4.87 (dd, $J=8.8,9.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.90 (dd, $J=8.8,13.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.06(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 15.06, 19.49, 28.25, 40.57, 68.44, 72.67, 108.4, 145.2, 156.1, 166.5. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{RhCl}_{3}$: $\mathrm{C}, 41.21 ; \mathrm{H}, 5.10 ; \mathrm{N}, 10.12$. Found: C, 41.18; H, 5.05 ; N, 10.23 .

Typical Procedure for Asymmetric Hydrosilylation: Reduction of Acetophenone with (4-Chloro-pybox) $\mathbf{R h C l}_{3}$ (8) and Diphenylsilane. A suspension of $8(43.6 \mathrm{mg}, 0.08 \mathrm{mmol})$ and AgBF_{4} ($31 \mathrm{mg}, 0.16 \mathrm{mmol}$) in THF (1.0 mL) was stirred at rt for 1 h . After addition of acetophenone ($0.93 \mathrm{~mL}, 8.0 \mathrm{mmol}$), diphenylsilane ($2.36 \mathrm{~g}, 12.8 \mathrm{mmol}$) was added at $-5^{\circ} \mathrm{C}$. The mixture was stirred for 3 h and treated with methanol and then hydrochloric acid (1.0 N) at $0^{\circ} \mathrm{C}$. The product yield was determined by GLPC analysis. After Kugelrohr distillation of the product, the enantioselectivity was determined by the optical rotation and by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the MTPA ester. See ref 2 for the values of optical rotation.

Ring Expansion of tert-Butyl 1-Vinylcyclopropane-1-carboxylates to α-Ethylidenebutyrolactones

Huw M. L. Davies* and Baihua Hu

Department of Chemistry, Wake Forest University, Box 7486, Winston-Salem, North Carolina 27109

Received January 6, 1992

Significant advances have been made recently in the development of synthetic transformations based on cyclopropane ring-expansion reactions. ${ }^{1,2}$ Cyclopropanes which contain both donor and acceptor functionalities are particularly effective in this regard because they react under mild conditions. ${ }^{1,3}$ Several methods are available for the synthesis of donor-acceptor-substituted cyclopropanes but the most general approach has been cyclopropanation of electron-rich alkenes by metal-stabilized carbenoids. ${ }^{1,4}$ Over the last few years we have shown that rhodium(II)-stabilized vinylcarbenoids are useful for the stereoselective synthesis of seven-membered carbocycles. ${ }^{5}$ Furthermore, their reaction with electron-rich alkenes leads to an intriguing class of donor-acceptor substituted cyclopropanes $1 .{ }^{6}$ In principle, competing rearrangements are possible for 1 involving either the vinyl or the carbonyl group. In this paper we describe the rearrangements of the tert-butyl esters of 1 , which lead to the formation of α-ethylidenebutyrolactones 2 as illustrated in eq $1 .{ }^{7}$

The thermolysis of the methyl ester 3 at $230^{\circ} \mathrm{C}$ resulted in the expected vinylcyclopropane rearrangement to generate the cyclopentene 4 in low yield (20%). Due to the presence of the donor-acceptor functionality in 3, the reaction occurred under less vigorous conditions than are typically required. ${ }^{8}$ The reaction could be carried out

[^0]under very mild conditions if diethylaluminum chloride was used as a Lewis acid catalyst (88% yield), and this approach has been used by us as part of a general process for the regioselective construction of cyclopentenes. ${ }^{6 b, c}$ Alternatively, rearrangement of 3 could be induced by boron tribromide, but in this case, the ring-opened product $5^{9,10}$ was produced after quenching the reaction mixture with water (48% yield).

Decomposition of the corresponding tert-butyl ester 6a proceeded in a different manner. Thermolysis of $6 a$ at 230 ${ }^{\circ} \mathrm{C}$ resulted in the formation of a mixture of α-ethylidenebutyrolactones (Z)-7a and (E)-7a (79% yield). ${ }^{10}$ A similar ring-opening reaction was observed for $6 \mathbf{b}$. The transformations of 6 to $(E)-7$ could also be carried out with boron tribromide at $-78^{\circ} \mathrm{C}$ ($56-72 \%$ yield), and under these conditions the isomeric butyrolactones (Z)-7 were not observed.

The thermolysis of the bicyclic system 8 resulted in an additional rearrangement pathway. On gradual heating to $200^{\circ} \mathrm{C}, 9$, the product of a 1,5 -homodienyl rearrangement, was obtained in 89% yield. On rapid heating to 245 ${ }^{\circ} \mathrm{C}$, however, the product was the fused butyrolactone 10 (36% yield). ${ }^{10}$ It is well recognized that 1,5 -homodienyl rearrangements can be reversible under high temperatures, ${ }^{2,8,11}$ and this may explain why a change in product distribution was observed here. This was confirmed by heating 9 at $245^{\circ} \mathrm{C}$ which led to the formation of an E / Z mixture of 10. Selective formation of the butyrolactone 10 was also achieved by treatment of 8 with boron tribromide.

The requirement of a strong donor for the facile formation of the butyrolactones was readily apparent from the reaction of the phenyl derivative 11. Thermolysis of 11 at $230^{\circ} \mathrm{C}$ generated the cyclopentenecarboxylic acid 12 (84% yield), while boron tribromide catalyzed decomposition of 11 at room temperature resulted in the slow

[^1]formation of a $1: 1$ mixture of butyrolactones $13 a^{10}$ and $13 b$ in low yield (39\%).

A number of recent reports have appeared on the use of $\mathrm{VOCl}_{2}(\mathrm{OEt})$ as an oxidant and a Lewis acid which is also capable of inducing ring-opening reactions of cyclobutanones. ${ }^{12}$ Treatment of the cyclopropanecarboxylate 6a with $\mathrm{VOCl}_{2}(\mathrm{OEt})$ at $0^{\circ} \mathrm{C}$ resulted in α-ethylidenebutyrolactone formation but in this case the product was the dimer 14a (45% yield). A similar transformation was observed with $\mathbf{6 b}$.

The reaction of the methyl cyclopropanecarboxylate 3 with $\mathrm{VOCl}_{2}(\mathrm{OEt})$ once again reflected the reluctance of this system to form butyrolactone products (eq 7). The di-

meric product 15 was readily formed (57% yield) in which the methyl ester functionality remained intact. As expected, the reaction of the 2-phenyl derivative 11 with $\mathrm{VOCl}_{2}(\mathrm{OEt})$ was much slower than the 2 -alkoxy systems. On heating under reflux in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 h , the main product formed was the cyclopropanecarboxylic acid 16 (eq 8). Under forcing conditions, 16 could be made to

undergo ring expansion to a butyrolactone but the product in this case was the chlorinated α-ethylidenebutyrolactone 17^{10} rather than a dimeric compound.
The rearrangement chemistry of the cyclopropane carboxylates is highly dependent on the ester functionality. With the methyl ester derivative 3, ring opening or vinylcyclopropane rearrangement was observed in which the methyl ester remained intact. Butyrolactone formation was dominant in the tert-butyl series, and as this group is labile under both thermal and Lewis acid conditions, it is reasonable to assume that the reaction proceeded via
(12) (a) Hirao, T.; Mori, M.; Ohshiro, Y. Chem. Lett. 1991, 783. (b) Hirao, T.; Mori, M.; Ohshiro, Y. J. Org. Chem. 1990, 55, 358. (c) Hirao, T.; Ohshiro, Y. Tetrahedron Lett. 1990, 31, 3917. (d) Hirao, T.; Fujii, T.; Ohshiro, Y. J. Organomet. Chem. 1991, 407, C1.
the carboxylic acid 18. Then, the divergence in reactivity between the methyl ester 3 and the carboxylic acid 18 can be rationalized by considering that the rearrangement of 18 proceeded by proton transfer induced ring opening to 19 followed by ring closure to the butyrolactone 20 (eq 9). Equilibration of the initially formed (Z)-20 to the E isomer would be expected to occur under both the thermal and Lewis acid catalyzed reaction conditions.

In summary, tert-butyl 2-alkoxy-1-vinylcyclopropane1 -carboxylates undergo thermal ring opening to form α ethylidenebutyrolactones. The reaction may be catalyzed by boron tribromide while the oxidant $\mathrm{VOCl}_{2}(\mathrm{OEt})$ results in the formation of dimeric products. These transformations are further examples of the diverse reactivity that is possible with donor-acceptor substituted cyclopropanes.

Experimental Section

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 200 and 50.3 MHz , respectively. Mass spectral determinations were carried out at $70 \mathrm{eV} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was freshly distilled from CaH_{2}. Column chromatography was carried out on silica gel 60 ($230-400$ mesh). Dimethylethyl 2 -diazobut-3-enoate was prepared by a published procedure. ${ }^{13}$

Rhodium(II) Carboxylate Catalyzed Decomposition of Dimethylethyl 2-Diazobut-3-enoate in the Presence of Vinyl Ethers. General Procedure. A solution of dimethylethyl 2-diazobut-3-enoate (1 equiv) in pentane ($0.1-0.5 \mathrm{M}$) was added dropwise to a stirred mixture of rhodium(II) carboxylate (0.01 equiv) and the vinyl ether (5 equiv, $0.1-0.5 \mathrm{M}$) in pentane, heated under reflux in an argon atmosphere. After the solution was heated for a further $10-60 \mathrm{~min}$, the solvent was evaporated under reduced pressure. The amounts of dimethylethyl 2-diazobut-3enoate, vinyl ether, and rhodium(II) catalyst used are presented in that order in abbreviated format. All products were purified by column chromatography on silica using ether-petroleum ether as eluant in the ratio specified in parenthesis.

1,1-Dimethylethyl 2-Ethoxy-1-vinylcyclopropanecarboxylate (6 a): $(0.62 \mathrm{~g}, 3.7 \mathrm{mmol})$, ethyl vinyl ether (1.32 g , 18.3 mmol), pivalate ($0.020 \mathrm{~g}, 0.037 \mathrm{mmol}$) ($1: 19$); yield 0.67 g (86%); IR (neat) $1710,1640 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 6.29$ (dd, $J=17.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (dd, $J=6.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.49(\mathrm{dq}, J=9.3$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dq}, J=9.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=6.9$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{dd}, J=6.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.13$ $(\mathrm{t}, ~ J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.5,130.2,114.5,80.7$, 66.9, 66.7, 32.7, 28.1, 20.0, 14.8. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 67.89; H, 9.50. Found: C, 67.93; H, 9.52.

1,1-Dimethylethyl 2-Butoxy-1-vinylcyclopropanecarboxylate (6 b): $(0.67 \mathrm{~g}, 4.0 \mathrm{mmol})$, butyl vinyl ether (2.00 g , $20 \mathrm{mmol})$, pivalate ($0.018 \mathrm{~g}, 0.03 \mathrm{mmol}$) ($1: 24$); yield $0.95 \mathrm{~g}(98 \%)$; IR (neat) $1705,1635 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 6.26$ (dd, $J=17.6$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, 1 H), 3.57 (dd, $J=6.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48-3.25$ (m, 2 H), 1.61 (dd, $J=6.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.20(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.5,130.1,114.6,80.7$, 71.3, 66.9, 32.8, 31.5, 28.1, 20.0, 19.3, 13.8. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 69.96 ; \mathrm{H}, 10.06$. Found: C, 69.72; $\mathrm{H}, 10.11$.

1,2-Dimethylethyl 6-Vinyl-3-oxabicyclo[3.1.0]hexane-6carboxylate (8): ($0.67 \mathrm{~g}, 4.0 \mathrm{mmol}$), dihydrofuran ($1.40 \mathrm{~g}, 20$ mmol), pivalate ($0.0105 \mathrm{~g}, 0.018 \mathrm{mmol}$) ($1: 9$); yield $0.62 \mathrm{~g}(74 \%$); IR (neat) $1695,1625 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.70$ (dd, $J=18.3$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (dd, $J=9.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (dd, $J=18.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (ddd, $J=15.9,8.7$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (ddd, $J=15.9,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dd, J
(13) Davies, H. M. L.; Saikali, E.; Clark, T. J.; Chee, E. H. Tetrahedron Lett. 1990, 31, 6299.
$=6.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.91($ ddd, $J=13.0,8.7,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 167.0,128.5,122.3$, 80.7, 72.1, 69.7, 36.6, 31.6, 26.0, 25.5. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 68.55; H, 8.63. Found: C, 68.45; H, 8.63.
1,1-Dimethylethyl 2-Phenyl-1-vinylcyclopropanecarboxylate (11): ($0.51 \mathrm{~g}, 3.0 \mathrm{mmol}$), styrene ($1.56 \mathrm{~g}, 15 \mathrm{mmol}$), pivalate ($0.018 \mathrm{~g}, 0.03 \mathrm{mmol}$) ($1: 49$); yield $0.58 \mathrm{~g}(79 \%)$; IR (neat) $1705,1635,1600 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.31-7.09(\mathrm{~m}, 5 \mathrm{H}), 5.76$ (dd, $J=17.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.97(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J$ $=17.0,1 \mathrm{H}), 2.90(\mathrm{dd}, J=9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=9.4$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.4,135.8,132.1,129.3,127.8,126.5,116.6,80.8,34.5$, 34.2, 28.1, 16.7. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 78.65; $\mathrm{H}, 8.25$. Found: C, 78.79; H, 8.24.

General Procedure for the Thermolysis of Cyclopropanecarboxylates. The cyclopropanecarboxylate was sealed under Ar in a heavy-walled Pyrex tube which had been previously treated with concd $\mathrm{NH}_{4} \mathrm{OH}$. The sealed tube was placed in an oil bath at a specific temperature and time. The amounts of cyclopropanecarboxylate, temperature, and time of heating are presented in that order in abbreviated format. All products were purified by column chromatography on silica using ether-petroleum ether as eluant in the ratio specified in parentheses.

5-Ethoxy-3-ethylidene-2-0x0-4,5-dihydrofuran (7a): 6a (0.39 $\mathrm{g}, 1.8 \mathrm{mmol}), 230^{\circ} \mathrm{C}, 35 \mathrm{~min}(1: 1) ;$ yield $0.22 \mathrm{~g}(79 \%) ; Z / E$ ratio $=1 / 6$; IR (neat) $1755,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(E)-7 \mathrm{a}$ $6.85-6.73(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=6.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dq}, J$ $=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dq}, J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{br} \mathrm{d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{br} \mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dt}, J=7.1$, $2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; (Z)-7a $(6.34-6.22$ (m, 1 H), 5.44 (dd, $J=6.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.87(\mathrm{dq}, J=9.5,7.1 \mathrm{~Hz}, 1$ H), $3.58(\mathrm{dq}, J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{br} \mathrm{d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.68 (br d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=7.3,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta(E)-7 \mathrm{a} 169.6,136.4,125.8$, 101.1, 65.1, 32.6, 15.7, 14.9. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 61.52$; H, 7.74. Found: C, 61.77; H, 7.82 .

5-Butoxy-3-ethylidene-2-ox0-4,5-dihydrofuran (7b): 6b ($0.65 \mathrm{~g}, 2.7 \mathrm{mmol}$), $245{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}(1: 1)$; yield $0.35 \mathrm{~g}(79 \%) ; Z / E$ ratio $=1 / 5$; IR (neat) $1762,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(E)-7 \mathrm{~b}$ $6.87-6.75$ ($\mathrm{m}, 1 \mathrm{H}$), 5.51 (dd, $J=6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90-3.76$ (m, 1 H), $3.56-3.48$ (m, 1 H), 2.97 (br d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (br $\mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=7.1,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.53$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.31 (sextet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $0.86(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$); (Z)-7b $6.31-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=6.3,2.3 \mathrm{~Hz}, 1$ H), $3.85-3.73$ (m, 1 H), $3.59-3.40(\mathrm{~m}, 1 \mathrm{H}$), 3.01 (br d, $J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.66 (br d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dt}, J=7.3,2.3 \mathrm{~Hz}$, 3 H), 1.53 (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.31 (sextet, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(E)-7 \mathrm{~b} 169.6$, 136.2, 125.9, 101.3, 69.3, 32.5, 31.4, 19.1, 15.6, 13.7. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 65.18; $\mathrm{H}, 8.76$. Found: C, 65.10; H, 8.81 .
(\boldsymbol{E})-1-[(1,1-Dimethylethoxycarbonyl)prop-1-en-1-yl]-2,5dihydrofuran (9): $8(0.26 \mathrm{~g}, 1.2 \mathrm{mmol}), 200^{\circ} \mathrm{C}, 15 \mathrm{~min}(1: 9)$; yield $0.23 \mathrm{~g}(89 \%)$; IR (neat) $1690,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 6.82(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.72(\mathrm{~m}, 2$ H), $4.73-4.66(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.2,139.8,133.6,128.2,126.2,82.1,80.4$, 75.4, 28.1, 13.6. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 68.55; H, 8.63. Found: C, 68.39; H, 8.66 .

4-Ethylidene-3-oxobicyclo[3.3.0]-2,8-dioxaoctane (10): 8 ($0.34 \mathrm{~g}, 1.6 \mathrm{mmol}$), $245{ }^{\circ} \mathrm{C}$, $12 \mathrm{~min}(9: 1-3: 7)$; yield $0.12 \mathrm{~g}(36 \%)$; Z / E ratio $=1 / 3.7 ; \operatorname{IR}$ (neat) $1750,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta(E)-10 \mathrm{a} 6.82(\mathrm{qd}, J=7.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1$ H), 4.03 (dd, $J=8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (ddd, $J=11.5,8.7,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(E)-10 \mathrm{a} 169.3,138.0,130.4$, 105.5, 66.8, 41.4, 32.2, 15.5. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$: C, 62.33; H, 6.54. Found: C, 62.43; H, 6.57.

4-Phenylcyclopent-1-enecarboxylic acid (12): $11(0.29 \mathrm{~g}$, 1.2 mmol) in 3 mL of xylene, $230^{\circ} \mathrm{C}, 4 \mathrm{~h}$, purified by recrystallization from petroleum ether; yield $0.19 \mathrm{~g}(84 \%)$; mp 85-90 ${ }^{\circ} \mathrm{C}$; IR (neat) $3200-2400,1710,1675,1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 11.0-10.5(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.40-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{tt}$, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 169.9,145.6,145.4,135.1,128.6,126.8,126.3,43.3$, 41.9, 39.3; MS m/e (rel intensity) 188 (70), 143 (100), 128 (50), 115 (30); HRMS m / e calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ 188.0837, found 188.0842.

General Procedure for the BBr_{3}-Catalyzed Rearrangement of Cyclopropanecarboxylates. A solution of cyclopropanecarboxylate (1 equiv, $0.1-0.4 \mathrm{M}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a stirred solution of BBr_{3} (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5$ equiv), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ under Ar. The mixture was maintained at $-78^{\circ} \mathrm{C}$ for 20 min and then warmed to rt for 3 h . After the misture was quenched with alcohol or water, water was added and the mixture was extracted twice with ether. The combined organic layers were extracted with water and saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. All proudcts were purified by column chromatography on silica using ether-petroleum ether as eluant in the ratio specified in parenthesis.

Methyl 2-Ethylidene-4-oxobutanoate (5): ${ }^{9} 3$ ($0.17 \mathrm{~g}, 3.0$ mmol), $\mathrm{H}_{2} \mathrm{O}$ quench (1:4); yield 0.053 g (48%); IR (neat) 2970 , 2920, 2910, 1770, 1710, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.62(\mathrm{t}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}$, $2 \mathrm{H}), 1.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 198.2,167.1$, 142.0, 124.7, 52.1, 41.5, 14.8.

3-Ethylidene-2-oxo-5-phenyl-4,5-dihydrofuran (13a) and 2-oxo-5-phenyl-3-vinyl-4,5-dihydrofuran (13 b): $11(0.90 \mathrm{~g}, 3.7$ mmol), stirred at room temperature for 2 h and then quenched with ethanol at $-78^{\circ} \mathrm{C}$ (3:17) combined yield $0.26 \mathrm{~g}(37 \%, 1: 1$ partially separable mixture). 13a: IR (neat) $1750,1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.42-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{dd}$, $J=8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31 (dddq, $J=17.0,8.3,2.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dddq, $J=17.0,6.4,2.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.84 (dt, $J=7.0,1.9$ $\mathrm{Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 170.5,140.4,136.1,128.7,128.3$, 126.8, 125.2, 77.9, 34.0, 15.9. 13b: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ 7.49-7.25 (m, 5 H), 5.99 (ddd, $J=16.9,10.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 (dd, $J=$ $10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.50 (ddd, $J=13.3,8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (m, 1 H), 2.13 (apparent q, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 76.57; H, 6.43. Found: C, 76.53 ; H, 6.45 .

General Procedure for the $\mathrm{VOCl}_{2}(\mathrm{OEt})$-Induced Reactions of Cyclopropanecarboxylates. A solution of the vinylcyclopropane (1 equiv, $0.05-0.5 \mathrm{M}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a stirred solution of $\mathrm{VOCl}_{2}(\mathrm{OEt})$ (2 equiv, $0.1-1 \mathrm{M}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ under stirring. After the solution was stirred for a further 5 min , water was added and the mixture was extracted ($2 \times$) with ether. The combined organic layers were washed with water and saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was then purified by chromatography on silica with the specified solvent.

5-Ethory-3-ethylidene-2-oxo-4,5-dihydrofuran dimer (14a): $6 \mathrm{a}(0.21 \mathrm{~g}, 1 \mathrm{mmol})$, yield $0.07 \mathrm{~g}(45 \%)$ (ether); IR ($\left.\mathrm{CCl}_{4}\right) 1770$, $1590 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.66-6.63(\mathrm{~m}, 2 \mathrm{H}), 5.54$ (dd, $J=$ $6.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.49 (dq, $J=9.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.36 (dq, $J=$ $9.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.98 ($\mathrm{br} \mathrm{d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.66 ($\mathrm{br} \mathrm{d}, J=$ $17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 169.4, 138.5, 126.4, 101.1, 65.2, 32.8, 28.7, 14.9; MS m/e (rel intensity) $311\left((\mathrm{M}+\mathrm{H})^{+}, 22\right), 162(30), 110(35), 91(32), 53$ (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 61.92; H, 7.14. Found: C, 62.00; H, 7.18 .

5-Butoxy-3-ethylidene-2-0x0-4,5-dihydrofuran dimer (14b): $6 \mathrm{~b}(0.24 \mathrm{~g}, 1 \mathrm{mmol})$, yield $0.09 \mathrm{~g}(51 \%)$, ether/petroleum ether (3:1); IR (CCl_{4}) $1750,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 6.75-6.51$ (m, 2 H), 5.52 (dd, $J=6.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.82(\mathrm{dt}, J=9.5,6.8 \mathrm{~Hz}$, 2 H), 3.52 (dt, $J=9.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.98 ($\mathrm{br} \mathrm{d}, J=17.4 \mathrm{~Hz}, 2$ H), 2.66 ($\mathrm{br} \mathrm{d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.33(\mathrm{~m}, 4 \mathrm{H}$), 1.56 (quintet, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.35$ (sextet, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 169.4,138.5,126.5,101.4,69.5,32.8$, $31.4,28.7,19.1,13.8$; MS m / e (rel intensity) $366\left(\mathrm{M}^{+}, 1\right), 219(60)$, 190 (25), 162 (70), 110 (100); HRMS m/e calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}$ 366.2042, found 366.2031 . Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}: \mathrm{C}, 65.55$; H, 8.25. Found: C, 65.34; H, 8.21.
(E, E)-3,8-Bis(methoxycarbonyl)deca-3,7-dienedial (15): $3(0.26 \mathrm{~g}, 1.5 \mathrm{mmol})$, yield $0.13 \mathrm{~g}(57 \%)$, ether-petroleum ether (1:1); mp $61-62^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) 2970,2920,2860,1710,1600 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.61(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{brt}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.71$ $(\mathrm{s}, 6 \mathrm{H}), 3.41(\mathrm{~s}, 4 \mathrm{H}), 2.26(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 197.9$, 166.9, 144.4, 125.2, 52.2, 41.7, 27.9; MS m / e (relative intensity) $283\left((\mathrm{M}+\mathrm{H})^{+}, 65\right), 162(65), 110(100)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 59.57; H, 6.43. Found: C, 59.74; H, 6.52 .
2-Phenyl-1-vinylcyclopropanecarboxylic Acid (16) and 3-(2-Chloroethylidene)-2-oxo-5-phenyl-4,5-dihydrofuran (17). A solution of cyclopropane $11(0.37 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{VOCl}_{2}(\mathrm{OEt})$
($0.37 \mathrm{~g}, 7.5 \mathrm{mmol}$) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed for 30 h . Water was then added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water and saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by chromatography on silica gel with ethyl acetate-hexane (3:7-4:6) as solvent gradient. 16: yield $0.15 \mathrm{~g}(24 \%)$; mp $84-86^{\circ} \mathrm{C}$; IR (neat) $3500-2550,1764,1686,1604 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.5$ (br s, 1 H), $7.45-7.10$ (m, 5 H), 5.82 (dd, $J=17.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (dd, $J=$ $8.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.97(\mathrm{dd}, J=8.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=$ $7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 180.0,135.0,130.8,129.3$, 127.9, 126.9, 117.9, 35.7, 33.3, 17.8. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 76.57; H, 6.43. Found: C, 76.41; H, 6.44.

17: $0.10 \mathrm{~g}(15 \%)$; IR $\left(\mathrm{CCl}_{4}\right) 1755,1575 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.50-7.28$ (m, 5 H), $6.88(\mathrm{tt}, J=7.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (dd, J $=8.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{br} \mathrm{dd}, J=$ $17.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{br} \mathrm{d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 169.7,139.6,133.4,130.1,128.9,128.7,125.3,78.3,39.7,33.8 ;$ HRMS m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Cl}$: 222.0448 , found 222.0444. Heating of 16 with $\mathrm{VOCl}_{2}(\mathrm{OEt})$ in dichloroethane under reflux for 12 h resulted in the formation of 17 in 59% yield.

Acknowledgment. We thank Ms. Mary Uhrig from R. J. Reynolds Tobacco Co. for HRMS determinations. The LRMS used in this work was obtained through a grant from the National Science Foundation (CHE 9007366). Financial support of this work by the National Science Foundation (CHE 9024248) is gratefully acknowledged.

Conjugated Macrocycles Related to the
 Porphyrins. 4. ${ }^{1}$ Synthesis of a 23,24-Dioxa-5-oxophlorin ${ }^{2}$

Timothy D. Lash
Department of Chemistry, Illinois State University, Normal, Illinois 61761-6901

Received March 16, 1992

Oxophlorins 1 are the keto tautomers of mesohydroxyporphyrins 2. Although the meso-hydroxyporphyrin structure can be trapped as, for example, the corresponding acetate by reaction with acetic anhydridepyridine, the cross-conjugated oxophlorin system is favored in neutral solutions. ${ }^{3}$ Oxophlorins 1 are important intermediates in the total synthesis of porphyrins, ${ }^{4}$ and an iron complex of the hydroxy tautomer 2 is believed to be an intermediate in heme catabolism. ${ }^{5}$ Monoprotonation of the oxophlorin system leads to monocations that also favor the keto form, but the hydroxyporphyrin tautomer is favored by the dications and metal complexes of these compounds. ${ }^{3-6}$ Oxophlorins are relatively unstable in

[^2]
[^0]: (1) (a) Reissig, H.-U. Top. Curr. Chem. 1988, 144, 73. (b) Reissig, H.-U. The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed.; Wiley: New York, 1987; Part 1, p 375. (c) Vehre, R.; De Kimpe, N. The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed.; Wiley, New York, 1987; Part 1, p 445. (d) Wong, H. N. C.; Hon, M.-Y.; Tse, C. W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. (e) Hudlicky, T.; Reed, J. W. Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 5, p 899.
 (2) Hudlicky, T.; Fleming, A.; Radesca, L. J. Am. Chem. Soc. 1989, 111, 6691 and references cited therein.
 (3) (a) Murray, C. K.; Yang, D. C.; Wulff, W. D. J. Am. Chem. Soc. 1990, 112, 5660. (b) Wienand, A.; Reissig, H.-U. Chem. Ber. 1991, 124, 957.
 (4) (a) Maas, G. Top. Curr. Chem. 1988, 137, 75. (b) Doyle, M. P. Chem. Rev. 1986, 86, 919. (c) Kunz, T.; Reissig, H.-U. Tetrahedron Lett. 1989, 30, 2079.
 (5) (a) Davies, H. M. L.; Clark, T. J.; Smith, H. D. J. Org. Chem. 1991, 56, 3817. (b) Cantrell, W. R.; Davies, H. M. L. J. Org. Chem. 1991, 56, 723. (c) Davies, H. M. L.; McAfee, M. J.; Oldenburg, C. E. M. J. Org. Chem. 1989, 54, 930.
 (6) (a) Davies, H. M. L.; Clark, T. J.; Church, L. A. Tetrahedron Lett. 1989, 30, 5057. (b) Davies, H. M. L.; Hu, B. Tetrahedron Lett. 1992, 33, 453. (c) Davies, H. M. L.; Hu, B. J. Org. Chem. 1992, 57, 3186.
 (7) For related examples of ring expansion of cyclopropanes to butyrolactones, see: (a) Wenkert, E. Acc. Chem. Res. 1980, 13, 27. (b) Wenkert, E.; Halls, D. J.; Kwart, L. D.; Magnusson, G.; Showalter, H. D. H. Tetrahedron 1981, 37, 4017. (c) Wenkert, E.; Alonso, M. E.; Buckwalter, B. L.; Chou, K. J. J. Am. Chem. Soc. 1977, 99, 4778. (d) Wenkert, E.; Hudlicky, T.; Showalter, H. J. Am. Chem. Soc. 1978, 100, 4893. (e) Brown, S. P.; Bal, B. S.; Pinnick, H. W. Tetrahedron Lett. 1981, 22, 4891. (f) Morizawa, Y.; Hiyama, T.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1984, 57, 1123.
 (8) (a) Goldschmidt, Z.; Cramer, B. Chem. Soc. Rev. 1988, 17, 229. (b) Hudlicky, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. 1985, 33, 247.

[^1]: (9) Herrmann, J. L.; Kieczykowski, G. R. Tetrahedron Lett. 1973, 47, 4711.
 (10) The alkene geometry was readily assigned based on distinctive chemical shifts. See: (a) Ohga, K.; Matsuo, T. Bull. Chem. Soc. Jpn. 1973, 46, 2181. (b) Murray, A. W.; Reid, R. G. Synthesis 1985, 35.
 (11) Hudlicky, T.; Koszyk, F. J. Tetrahedron Lett. 1980, 21, 2487.

[^2]: (1) Part 3: Armiger, Y. L. S.-T.; Lash, T. D. J. Heterocycl. Chem. 1992, 29, 523
 (2) Reported, in part, at the Thirteenth International Congress of Heterocyclic Chemistry, Oregon State University, Corvallis, OR, Aug 1991. Lash, T. D.; Armiger, Y. L. S.-T.; Liu, W. H. Book of Abstracts, PO2-90.
 (3) (a) Jackson, A. H.; Kenner, G. W.; Smith, K. M. J. Chem. Soc. C 1968, 294. (b) Clezy, P. S.; Looney, F. D.; Nichol, A. W.; Smythe, G. A. Aust. J. Chem. 1966, 19, 1481.
 (4) Jackson, A. H.; Kenner, G. W. Nature 1967, 215, 1126. (b) Clezy, P. S.; Jackson, A. H. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1978; Vol. 1, pp 265-288.
 (5) Jackson, A. H. In Iron in Biochemistry and Medicine; Jacob, A., Wormwood, M., Eds.; Academic Press: London, 1974; p 145-182.
 (6) Clezy, P. S. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1978; Vol. 2, pp 103-130.

